from rag_opt.dataset import TrainDataset
from rag_opt.optimizer import Optimizer
# First you have to run generate_questions_.py
# to get a list of QAs to be used in the evaluation process
# Load the training dataset (questions/answers)
train_dataset = TrainDataset.from_json("rag_dataset.json")
# Initialize the optimizer
optimizer = Optimizer(
train_dataset=train_dataset,
config_path="rag_config.yaml",
verbose=True
)
# Run optimization
# Increase n_trials for better results
best_config = optimizer.optimize(n_trials=2, best_one=True,plot_hypervolume=True)
best_config.to_json()